bonding orbital (b₂) is delocalized (and may account for the peak in the PES at 10.07 eV). This orbital can interact with the πd orbital of the metal; it and its antibonding counterpart may play some role in the delocalization of electron density. If the contribution of the bonding level dominated, III would be expected to show a more intense band than II, because isonicotinamide, by making Ru(III) more oxidizing, would cause a stronger admixture of the Ru(III)·L⁺·Ru(III) state into the ground state.

Since a significant fraction of the nominally [2.3] species is present in the isovalent forms, the extinction coefficient of the mixed-valence molecule may be as high as 60 or 70, suggesting that elecron transfer within the molecule, while nonadiabatic, is not markedly so.15

Acknowledgment. Support for this work through Grant GM13638-14 from the National Institutes of Health is gratefully acknowledged.

(15) Sutton, J. E.; Sutton, P. M.; Taube, H. Inorg. Chem. 1979, 18, 1017.

Photochemistry of Transition-Metal Polyhydrides: Dimerization of ReH₅(PMe₂Ph)₃ Following Photodissociation of Phosphine[†]

M. A. Green, J. C. Huffman, and K. G. Caulton*

Department of Chemistry and Molecular Structure Center Indiana University, Bloomington, Indiana 47405 Received September 8, 1980

Among low-valent metals, those at the center of the transition series (groups 6, 7, and 8) constitute a group where the effective atomic number concept rules most firmly. Moreover, within a group it appears that the heavier representatives have the greatest aversion to coordinative unsaturation. It is thus predictable that monomeric 16-electron rhenium complexes should be (1) difficult to produce and, once formed, (2) highly reactive. We report here the photoassisted production of H₅Re(PMe₂Ph)₂ by an unprecedented photoextrusion of phosphine in preference to dihydrogen. We demonstrate a regioselective and catalytic activation of arene C-H bonds by 16-electron H₅Re(PMe₂Ph)₂ and also the efficient condensation of this fragment to a new class of rhenium polyhydride dimers.

Photolysis¹ of a benzene solution of colorless H₅Re(PMe₂Ph)₃² results in rapid appearance of a dark red color due to a new polyhydride dimer of formula $H_6Re_2P_5$ ($P \equiv PMe_2Ph$). In a closed vessel of limited head space, $H_7ReP_2^{2,3,4a}$ is also a detectable product, but it, unlike $H_6Re_2P_5$, is rather photosensitive (see below).

We have sought to establish the primary chemical product of irradiation, although the existing literature^{5,6} indicates that L_mMH_n $(n \ge 2)$ complexes generally undergo photoextrusion of dihydrogen. We consider the two processes shown in eq 1 and 2. Irradiation

$$H_5ReP_3 \stackrel{h\nu}{\Longleftrightarrow} H_3ReP_3 + H_2$$
 (1)

$$H_5 Re P_3 \stackrel{h\nu}{\Longleftrightarrow} H_5 Re P_2 + P$$
 (2)

of a benzene solution of H₅ReP₃ in the presence of 3 equiv of PMe₂Ph completely quenches dimerization; no change is evident in the solution composition after irradiation. Additionally, irradiation of a C₆D₆ solution of D₅ReP₃ containing excess free

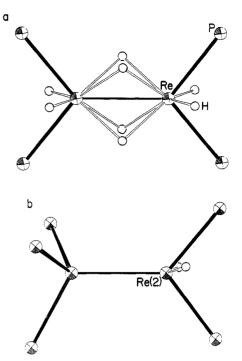


Figure 1. ORTEP drawings of the inner coordination spheres of (a) H₈Re₂(PEt₂Ph)₄⁴ and (b) H₆Re₂(PMe₂Ph)₅, oriented to show the structural relationship between the two.¹⁶ Note that only two of the six metal-bound hydrogens have been located in H₆Re₂(PMe₂Ph)₅. These yield a terminal ligand environment about Re(2) which closely mimics that in H₈Re₂(PEt₂Ph)₄.

Scheme I

$$ReH_5P_3$$
 $\xrightarrow{\hbar\nu}$ H_5ReP_2 + P
 H_2
 H_7ReP_2 $\xrightarrow{\hbar\nu}$ $H_8Re_2P_4$ \xrightarrow{P} $H_6Re_2P_5$ + H_2

PMe₂Ph under a purge of H₂ results in no incorporation of protium bound directly to rhenium. Finally, irradiation of a benzene solution of H5Re(PMe2Ph)3 containing 6 equiv of PEt2Ph shows (31P NMR) production of all possible species of the type H₅Re-(PMe₂Ph)_{3-n}(PEt₂Ph)_n, along with free PMe₂Ph. This photoinduced phosphine exchange, along with the preceding two experiments, indicates that irradiation effects dissociation of phosphine (eq 2). Photoextrusion of hydrogen (eq 1) is not viable even as a second, independent photodecay pathway. This result is highly significant in that the photoproduct thus conserves the inherently more interesting hydride ligand.

The photodimerization (eq 3) which occurs in the absence of added phosphine is enhanced in rate when carried out under a

$$2H_5ReP_3 \xrightarrow{h\nu} H_6Re_2P_5 + 2H_2 + P \tag{3}$$

purge of H₂. Under these conditions, H₇ReP₂ achieves considerably higher concentrations at intermediate stages of the photolysis. Conversely, an argon purge during photolysis slows (but does not completely prevent) dimer formation; this establishes the existence of a direct path from H₅ReP₂ to the dimer. We interpret these results in terms of Scheme I, which invokes both a direct route to dimer from H₅ReP₂ and also dimerization of H₇ReL₂ by a secondary photolysis.⁹ If irradiation is carried out in hexane,

[†]Contribution No. 3552.

⁽¹⁾ Hanovia 550-W medium-pressure Hg lamp, through Pyrex glass.

⁽¹⁾ Hanovia 550-W medium-pressure Hg lamp, through Pyrex glass.
(2) Douglas, P. G.; Shaw, B. L. Inorg. Synth. 1977, 17, 64.
(3) Chatt, J.; Coffey, R. S. J. Chem. Soc. A, 1969, 1963.
(4) (a) Bau, R.; Carroll, W. E.; Hart, D. W.; Teller, R. G.; Koetzle, T. F. Adv. Chem. Ser. 1978, No. 167, 73. (b) Bau, R.; Carroll, W. E.; Teller, R. G.; Koetzle, T. F. J. Am. Chem. Soc. 1977, 99, 3872.
(5) (a) Goeffroy, G. L.; Bradley, M. G.; Pierantozzi, R. Adv. Chem. Ser. 1978, No. 167, 180. (b) Geoffroy, G. L.; Wrighton, M. S. "Organometallic Photochemistry"; Academic Press: New York, 1979; Chapter 7.
(6) Grehenik P. Downs A. L. Green, M. L. H. Peruzz R. N. J. Chem.

⁽⁶⁾ Grebenik, P.; Downs, A. J.; Green, M. L. H.; Perutz, R. N. J. Chem. Soc., Chem. Commun. 1979, 742.

⁽⁷⁾ This same solution held at 80 °C for 3 h showed no evidence (31P NMR) for phosphine exchange.

⁽⁸⁾ We view this experiment as equivalent to an isotopic exchange. It is essentially entropically driven: when the mixture of complexes $H_5Re-(PMe_2Ph)_{3-n}(PEt_2Ph)_n$, separated from free PEt_2Ph, is irradiated in the presence of added PMe_2Ph, complete regeneration of $H_5Re(PMe_2Ph)_3$ is

⁽⁹⁾ H₇ReP₂ is thermally stable to dimerization under our photochemical reaction conditions. The photodimerization of H7ReP2 has been verified independently.

H₈Re₂P₄^{3,4} may be intercepted since it precipitates. We have shown directly that the Re(IV) polyhydride H₈Re₂P₄ undergoes facile thermal phosphine-induced reductive elimination of H₂ at 25 °C in benzene, and therefore propose that it, and not H₆Re₂P₅, is the first stable dimeric product of photolysis. The reduced polyhydride H₆Re₂P₅, whose coordination sphere is shown^{10,11} in Figure 1b, is unusual in being a mixed oxidation state species. The metal-metal separation [2.589 (1) Å] is similar to that in $H_8Re_2P_4$ [2.538 (4) Å],⁴ in spite of ¹H NMR evidence¹² which indicates H₆Re₂P₅ to have one terminal hydride on Re(1), and thus only three μ_2 -H ligands.

H₅ReP₂ activates arene C-H bonds. Any of the above irradiations of H₅ReP₃, when carried out in C₆D₆, effects deuteration of the metal in both H₅ReP₃ and the dimeric products. In a competitive process, the aryl ring of the phosphine also undergoes deuteration by D₅ReP₃ during irradiation. This is evident if the photoassisted phosphine exchange experiment described above is performed in C₆D₆: the liberated phosphine appears (³¹P NMR) as at least two lines of unequal intensity, due to a deuterium isotope effect on the ³¹P chemical shift (8-Hz upfield at 40 MHz for the ring-deuterated species).¹³ Remarkably, ¹H NMR shows that arylphosphine deuteration occurs only at the meta and para positions; no ortho deuteration is detected. This suggests that deuteration of coordinated phosphine is an intermolecular process, in which D₅ReP₂ acts on the aryl ring of D₅ReP₃ as it would on more conventionally substituted arenes.¹⁴

We are continuing to explore the reactivity of H₅ReP₂ and H₆Re₂P₅ as well as the synthetic generality of the concept of photocondensation of polyhydride monomers to polyhydride di-

Acknowledgment. This work was supported by the National Science Foundation under Grants CHE 77-10059 and CHE 80-06331 and the M. H. Wrubel Computer Center. We thank Professor A. P. Sattelberger for providing a crucial 360-MHz ¹H NMR spectrum and Drs. Klabunde and Parshall for free exchange of information and compounds.

Supplementary Material Available: A table of atomic positional and thermal parameters (1 page) for H₆Re₂(PMe₂Ph)₅. Ordering information is given on any current masthead page.

(10) The two terminal hydride positions shown in Figure 1b were located in a difference Fourier map. We have suspended any search for the remaining

in a difference Fourier map. We have suspended any search for the remaining four hydridic hydrogens pending a neutron diffraction study. (11) Crystallographic data (-170 °C): a = 11.737 (3), b = 13.031 (4), c = 15.238 (5) Å; $\alpha = 73.39$ (1), $\beta = 90.76$ (2), $\gamma = 108.16$ (1)°; V = 2114.8 Å³; Z = 2 in space group $P\bar{1}$; R(F) = 3.7%, $R_w(F) = 4.1\%$ for 5020 observed $[F_o > 2.3\sigma(F_o)]$ reflections using anisotropic thermal parameters for all nonhydrogen atoms; all hydrogens bound to carbon were refined isotropically.

(12) The 360-MHz ¹H NMR spectrum of H₆Re₂(PMe₂Ph)₅ in toluene- d_6 shows three hydride resonances at -90 °C: δ -6.30 (br s), -9.75 (t, J = 44.5 Hz), and -10.35 (quartet, J = 45.0 Hz) with intensities of 3:2:1 (integrated relative to the 30 methyl protons). At room temperature these collapse into a single broad resonance at -8.26 ppm.

(13) P(2,6-D₂C₆H₃)₃, kindly supplied by U. Klabunde and G. Parshall, experiences a ³¹P deuterium isotope effect of 25 Hz (0.6 ppm).

(14) U. Klabunde has informed us of unpublished experiments in which

(14) C. Rabunde has informed us of unpublished experiments in which has observed exchange of D₂ with a variety of arenes catalyzed by H₃Re(PMe₂Ph)₃ at 108 °C. A detailed description of related thermal exchanges has been reported for other metal hydride catalysts.¹⁵
(15) Klabunde, U.; Parshall, G. W. J. Am. Chem. Soc. 1972, 94, 9081. (16) Selected distances: Re(1)-P: 2.317 (2), 2.327 (2), and 2.345 (2) Å; Re(2)-P: 2.313 (2) and 2.298 (2) Å. Selected angles: P-Re(1)-P, 102.1-111.6°; P-Re(2)-P, 103.4°; P-Re(1)-Re(2), 104.5-117.5°; P-Re(2)-Re(1), 126.5° and 129.6° 126.5 and 129.6°

On the Mechanism of T4 RNA Ligase¹

F. R. Bryant and S. J. Benkovic*

Department of Chemistry, The Pennsylvania State University University Park, Pennsylvania 16802 Received October 6, 1980

The bacteriophage T4 RNA ligase catalyzes the formation of a 5'-3'-phosphodiester linkage, thereby joining two oligoriboScheme I

$$ATP + ligase = AMP - ligase + PP_i$$
 (1)

$$AMP-ligase + p(Np)_n = App(Np)_n + ligase$$
 (2)

$$App(Np)_n + (Np)_m N \xrightarrow{\text{ligase}} (Np)_m Np(Np)_n$$
 (3)

Scheme II

$$0 \longrightarrow \bigcap_{Q} \bigcap_{Q}$$

Scheme III

1
$$\frac{1. \text{NoIO}_4}{2. \text{OH}}$$
 $0 \frac{\text{O}_{M/P}}{\text{O}} = -\text{OIn} + \text{AdO} = -\text{O} - \text{Pinion}$

$$0 \frac{\text{S}}{\text{O}} = -\text{OIn} + \text{AdO} = -\text{OIn} + \text{Ad$$

nucleotides with the concomitant conversion of ATP to AMP and inorganic pyrophosphate (PP_i).² A plausible minimum reaction sequence constructed from the observation of an adenylated enzyme (AMP-ligase)³ and under certain experimental conditions an adenylated pyrophosphoryl intermediate $(App(Np)_n)^4$ is given in Scheme I, where $p(Np)_n$ represents an oligoribonucleotide where $n \ge 1$ (the 5'-phosphoryl donor) and $(Np)_mN$ represents an oligoribonucleotide where $m \ge 2$ (the 3'-hydroxyl acceptor). We have sought the answers to two questions: (1) Is there, possibly for reasons of symmetry, an undetected reaction intermediate involving a covalent bond between the ligase and the donor in the last step of the above sequence? (2) Is there a preferred chirality at phosphorus maintained in the activation and transfer of the 5'-phosphoryl moiety in steps 2 and 3?

The stereochemical course of step 3 with respect to phosphorus was investigated by using 1 and 2, which were synthesized as outlined in Scheme II. Activation of inosine 5'-phosphorothioate5 by diphenyl phosphorochloridate⁶ was followed by coupling to adenosine monophosphate to yield 1 and 2 in 44% total yield. These were separated by column chromatography on DEAE-

(6) A. M. Michaelson, Biochim. Biophys. Acta, 91, 1-13 (1964).

⁽¹⁾ Supported by Grant No. GM 13306 from the National Institutes of

^{(2) (}a) R. Silber, V. G. Malathi, and J. Hurwitz, *Proc. Natl. Acad. Sci. U.S.A.*, **69**, 3009-3013 (1972); (b) G. K. Kaufmann and N. R. Kallenbach, *Nature (London)*, **254**, 452-454 (1975); (c) G. C. Walker, O. C. Uhlenbeck, E. Bedows, and R. I. Gumport, Proc. Natl. Acad. Sci. U.S.A., 72, 122-126

⁽³⁾ J. W. Cranston, R. Silber, V. G. Malathi, and J. Hurwitz, J. Biol.

Chem., 249, 7447-7456 (1974).
(4) (a) E. Ohtsuka, S. Nishikawa, M. Sugiura, and M. Ikehara, Nucleic Acids Res., 3, 1613-1623 (1976). (b) J. J. Sninsky, J. A. Last and P. T. Gilham, ibid., 33, 3157-3166 (1976).

⁽⁵⁾ W. A. Murray and M. R. Atkinson, Biochemistry, 7, 4023-4029 (1968). The desired nucleotide was prepared from adenosine 5'-phosphorothioate by employing adenylic acid deaminase.